H-maxima transform - определение. Что такое H-maxima transform
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое H-maxima transform - определение


H-maxima transform         
In mathematical morphology, the h-maxima transform is a morphological operation used to filter local maxima of an image based on local contrast information. First all local maxima are defined as connected pixels in a given neighborhood with intensity level greater than pixels outside the neighborhood.
Z-transform         
MATHEMATICAL TRANSFORM WHICH CONVERTS SIGNALS FROM THE TIME DOMAIN TO THE FREQUENCY DOMAIN
Z transform; Laurent transform; Bilateral Z-transform; Bilateral z-transform; Z Transform; Z-domain; Z-transformation
In mathematics and signal processing, the Z-transform converts a discrete-time signal, which is a sequence of real or complex numbers, into a complex frequency-domain (z-domain or z-plane) representation.
Penrose transform         
COMPLEX ANALOGUE OF THE RADON TRANSFORM THAT RELATES MASSLESS FIELDS ON SPACETIME TO COHOMOLOGY OF SHEAVES ON COMPLEX PROJECTIVE SPACE
Penrose-Ward transform; Ward transform; Penrose–Ward transform; Ward correspondence; Twistor transform
In theoretical physics, the Penrose transform, introduced by , is a complex analogue of the Radon transform that relates massless fields on spacetime to cohomology of sheaves on complex projective space. The projective space in question is the twistor space, a geometrical space naturally associated to the original spacetime, and the twistor transform is also geometrically natural in the sense of integral geometry.